intervalos

Intervalo abierto

Intervalo real 01.svg

No incluye los extremos.

  •  (a,b)\ o bien  ]a,b[\
  • Notación conjuntista o en términos de desigualdades:

En la definición de límite ordinario de una función real se considera como dominio un intervalo abierto que contiene al punto de acumulación.

En la topología usual de la recta (o ℝ) se usa un intervalo abierto para definir un conjunto abierto en dicha topología. En la topología usual de ℝ, un intervalo abierto es un conjunto abierto. El intervalo abierto es igual a su interior, su frontera es el conjunto {a, b} y su clausura es el intervalo cerrado [a, b].3

Intervalo cerrado

Intervalo real 04.svg

Sí incluye los extremos.

  • Que se indica:  [a,b]\
  • Notación conjuntista o en términos de desigualdades
Incluye únicamente uno de los extremos.
Intervalo real 03.svg
  • Con la notación  (a,b]\ o bien  ]a,b]\ indicamos.

En notación conjuntista:

Intervalo real 02.svg
  • Y con la notación  [a,b)\ o bien  [a,b[\ ,

En notación conjuntista:

Los cuatro tipos de intervalos anteriores se llaman finitos; los expertos asignan como su longitud |b- a|. Son muy útiles en el análisis matemático y en los temas de topología general, para el estudios de diferentes conceptos como clausura, interior, frontera, conexidad, etc.4 . Se usan en definición de funciones como la función máximo entero, o la función techo o función piso en matemáticas discretas y para la solución de ecuaciones que conllevan valor abosoluto, la función signo, etc.5

Los intervalos finitos tienen un centro de simetría que es (a + b)/2, llamado punto medio, donde los extremos son a y b con a < a="b," class="reference" id="cite_ref-6">6 .

CLASIFICACION DE LOS INTERVALOS


Se pueden clasificar los intervalos según sus características topológicas (intervalos abiertos, cerrados, semiabiertos) o según sus características métricas (longitud: nula, finita no nula, infinita).
La siguiente tabla resume los 11 casos posibles, con ab, y x perteneciente al intervalo:
Notación Intervalo Longitud Descripción
[a, b] \,  a \le x \le b b-a \, Intervalo cerrado de longitud finita.
[a, b[ \ \ \mathrm{ \acute o } \ \  [a, b) \!  a \le x < b\! b-a \, Intervalo semiabierto (cerrado en a, abierto en b).
]a, b] \ \ \mathrm{ \acute o } \ \  (a, b] \! a < x \le b b-a \, Intervalo semiabierto (abierto en a, cerrado en b).
]a, b[ \ \ \mathrm{ \acute o } \ \  (a, b) \! a<x<b \! b-a \, Intervalo abierto.
]-\infty, b[ \ \ \mathrm{ \acute o } \ \  (- \infty, b) \!  x < b \! \infty Intervalo semiabierto.
]-\infty, b] \ \ \mathrm{ \acute o } \ \  (- \infty, b] \!  x \le b \! \infty Intervalo semiabierto.
[a, \infty [ \ \ \mathrm{ \acute o } \ \  [a, \infty ) \!  x \ge a \! \infty Intervalo semiabierto.
]a, \infty [ \ \ \mathrm{ \acute o } \ \  (a, \infty ) \!  x > a \! \infty Intervalo semiabierto.
]\infty, + \infty [ \ \ \mathrm{ \acute o } \ \  (\infty, + \infty ) \!  x \in \mathbb{R} \! \infty Intervalo a la vez abierto y cerrado.
 \{ a \} \!  x=a \!  0 \! Intervalo cerrado de longitud nula (intervalo degenerado).
\{\} = \emptyset\! sin elemento cero Conjunto vacíoIntervalo abierto (a,a).
7

No hay comentarios:

Publicar un comentario